Energy News  
CIVIL NUCLEAR
Supercomputers and Archimedes' law enable calculating nanobubble diffusion in nuclear fuel
by Staff Writers
Moscow, Russia (SPX) Apr 22, 2020

.

Researchers from the Moscow Institute of Physics and Technology have proposed a method that speeds up the calculation of nanobubble diffusion in solid materials. This method makes it possible to create significantly more accurate fuel models for nuclear power plants. The paper was published in the Journal of Nuclear Materials.

Why does nuclear fuel 'age'?
During the reactor operation, fission fragments, flying at high speeds through the crystal lattice of the nuclear fuel material, create various defects - vacancies, interstitial atoms, and their clusters. Combining, such vacancies form bubbles that fill up with fission gas products during fuel burnout. The diffusion of such nanobubbles significantly affects the properties of the fuel and the release of gaseous fission products from it.

Modeling to the rescue
Fuel aging processes are hard to research in an experimental fashion. On the one hand, such processes are very slow, and on the other hand, gathering experimental data during the reactor operation is almost impossible. Therefore, integrated models are currently being developed to allow calculating the evolution of fuel material properties during the burnout process. The nanobubble diffusion coefficient is one of the key parameters in such models. This study is a joint project of MIPT and the Joint Institute for High Temperatures of the Russian Academy of Sciences.

From Schrodinger equation to dynamics of hundreds of thousands of atoms
The researchers from the Laboratory of Supercomputer Methods in Condensed Matter Physics at MIPT examined atomistic models of the material comprising hundreds of thousands of atoms. Using supercomputers, the team calculated their trajectories over hundreds of millions or even billions of integration steps. The gamma uranium interatomic interaction model used was obtained by the physicists in the course of their previous work, based on resolving the quantum mechanical problem for a multielectron system.

MIPT doctoral student Alexander Antropov, a co-author of the paper, explained: "For the nanobubble to move, it is necessary for the lattice atoms to cross over to the other side of the bubble. This is similar to an air bubble moving in water. However, in solid materials, this process is much slower.

When working on the project, we demonstrated that there is another difference: The pores in the lattice take the form of polyhedra and the stable faces inhibit the diffusion process. In the 1970s, the possibility of such an effect was predicted theoretically based on general considerations. Our method makes it possible to obtain quantitative results for a specific material."

"Due to the fact that the diffusion of nanobubbles is very slow, the only real way to model their movement is to somehow give them a push. The problem, however, is how do you push a void? While working on the project, we proposed and established a method, in which an external force acts on the material surrounding the nanopore. The bubble begins to float upwards, similarly to a bubble in water under the buoyant force of Archimedes' principle.

The proposed method is based on the Einstein-Smoluchowski relation and makes diffusion coefficient calculations dozens of times faster. In the future, we plan to use it for other materials that are exposed to severe radiation damage in nuclear reactors," commented Vladimir Stegailov, MIPT professor, the head of the MIPT Laboratory of Supercomputer Methods in Condensed Matter Physics.

Research paper


Related Links
Moscow Institute Of Physics And Technology
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CIVIL NUCLEAR
Framatome signs long-term support contract for Taishan EPR operations
Paris, France (SPX) Apr 15, 2020
Framatome signed a long-term service contract with the Taishan Nuclear Power Joint Venture Company Limited (TNPJVC) to support operations of two EPRs at the Taishan Nuclear Power Plant in China. This contract covers nuclear plant outage and maintenance work, including spare parts supply and engineering services for eight years. "This contract marks an important step in our long-lasting collaboration with TNPJVC and illustrates the cooperation between France and China in the nuclear industry, using ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CIVIL NUCLEAR
Under pressure: New bioinspired material can 'shapeshift' to external forces

Valorizing wastewater can improve commercial viability of biomass oil production

Ethanol production plummets as people drive less during pandemic

Making biofuels cheaper by putting plants to work

CIVIL NUCLEAR
Scientists have devised method for gentle laser processing of perovskites at nanoscale

Windows will soon generate electricity, following solar cell breakthrough

Physicists develop approach to increase performance of solar energy

New discovery settles long-standing debate about photovoltaic materials

CIVIL NUCLEAR
Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

CIVIL NUCLEAR
Europe's banks not doing enough on climate: pressure group

DLR rethinks carbon pricing process

Brussels tries to inoculate EU Green Deal against virus

Major new study charts course to net zero industrial emissions

CIVIL NUCLEAR
Microwaves power new technology for batteries, energy

A new way to cool down electronic devices, recover waste heat

New scavenger technology allows robots to 'eat' metal for energy

High-performance electrolyte solves battery puzzle

CIVIL NUCLEAR
Water replaces toxic fluids in production of plastics

Airborne particle levels plummet in Northern India

Senegal bans most single-use plastics

Soot may only be half the problem when it comes to cookstoves

CIVIL NUCLEAR
Crude lifted by Iran-US tension but virus impact hits stocks

Study: Permian Basin has highest U.S. oil, gas methane emissions ever

Crisis-hit oil market in frantic hunt for storage

No last goodbye for Gulf migrant workers lost to pandemic

CIVIL NUCLEAR
Nanocardboard flyers could serve as martian atmospheric probes

Surface Hot Springs May Have Existed on Ancient Mars

Mars 2020 Perseverance rover gets balanced

NASA's Curiosity Keeps Rolling As Team Operates Rover From Home









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.