Energy News
ENERGY TECH
Plasma heating efficiency in fusion devices boosted by metal screens
illustration only
Plasma heating efficiency in fusion devices boosted by metal screens
by Raphael Rosen for PPPL News
Princeton NJ (SPX) Dec 20, 2024

Heating plasma to the ultra-high temperatures needed for fusion reactions requires more than turning the dial on a thermostat. Scientists consider multiple methods, one of which involves injecting electromagnetic waves into the plasma, the same process that heats food in microwave ovens. But when they produce one type of heating wave, they can sometimes simultaneously create another type of wave that does not heat the plasma, in effect wasting energy.

In response to the problem, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have performed computer simulations confirming a technique that prevents the production of the unhelpful waves, known as slow modes, boosting the heat put into the plasma and increasing the efficiency of the fusion reactions.

"This is the first time scientists have used 2D computer simulations to explore how to reduce slow modes," said Eun-Hwa Kim, a PPPL principal research physicist and lead author of the paper reporting the results in Physics of Plasmas. "The results could lead to more efficient plasma heating and possibly an easier path to fusion energy."

The team, which included researchers from General Atomics who use the DIII-D tokamak fusion facility, determined that positioning a metal grate known as a Faraday screen at a slight five-degree slant with respect to the antenna producing the heating waves, also known as helicon waves, stops the production of the slow modes. Researchers want to avoid creating slow modes because, unlike helicon waves, they cannot penetrate the magnetic field lines confining the plasma to heat the core, where most fusion reactions occur. In addition, the slow modes are easily damped or snuffed out by the plasma itself. Therefore, any energy used to create slow modes is energy that is not used to heat the plasma and foster fusion reactions.

The researchers simulated the production of helicon waves and slow modes using the Petra-M computer code, a powerful and versatile program used to model electromagnetic waves in fusion devices and space plasmas. The simulations replicated conditions in the DIII-D tokamak, a doughnut-shaped plasma device operated by General Atomics for the DOE. The team performed a series of virtual experiments to test which of the following had the greatest effect on the production of slow modes - the antenna's alignment, the Faraday screen's alignment or the density of small particles known as electrons in front of the antenna. The simulations confirmed suggestions made by previous researchers indicating that when the Faraday screen was aligned at an angle of five degrees or less from the orientation of the antenna, the screen, in effect, short-circuits the slow modes, making them fizzle out before they propagate into the plasma.

The suppression of slow modes depends greatly on how much the Faraday screen leans to the side. "We found that when the screen's orientation exceeds five degrees by only a little bit, the slow modes grow by a great deal," said PPPL principal research physicist Masayuki Ono, one of the paper's authors. "We were surprised by how sensitive the development of slow modes was to the screen alignment." Scientists could use this information to tweak the design of new fusion facilities to make their heating more powerful and efficient.

In the future, the scientists plan to increase their understanding of how to prevent slow modes by running computer simulations that consider more of the plasma's properties and factor in more information about the antenna.

Research Report:Full-wave simulations on helicon and parasitic excitation of slow waves near the edge plasma

Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
MIT spinout Commonwealth Fusion Systems unveils plans for the world's first fusion power plant
Boston MA (SPX) Dec 18, 2024
America is one step closer to tapping into a new and potentially limitless clean energy source today, with the announcement from MIT spinout Commonwealth Fusion Systems (CFS) that it plans to build the world's first grid-scale fusion power plant in Chesterfield County, Virginia. The announcement is the latest milestone for the company, which has made groundbreaking progress toward harnessing fusion - the reaction that powers the sun - since its founders first conceived of their approach in an MIT ... read more

ENERGY TECH
Significant progress in engineering biology for clean energy

Breakthrough in sustainable energy with photochemical water oxidation

IATA chief says sustainable plane fuel supply not enough

From chip shop grease to efficient fuel alternative

ENERGY TECH
Buried interface engineering drives advances in tin-lead perovskite solar cell efficiency

SFU report calls for Canada to prioritize large-scale solar power projects

Training solar panels to adapt to wind conditions

New solar material advances green hydrogen production

ENERGY TECH
BP to 'significantly reduce' renewables investment

Baltic Sea wind farms impair Sweden's defence, says military

Sweden blocks 13 offshore wind farms over defence concerns

Sweden's defence concerned by planned offshore wind power

ENERGY TECH
'Dark lull' in German energy transition sparks political debate

Iran extends school closures in Tehran amid fuel shortages

Russia says 'massive' strike on Ukraine a response to Kyiv's ATACMS use

Brazil trumpets emission cut plans at UN top court

ENERGY TECH
Stor4Build heats up thermal energy storage solutions for buildings, grid

Plasma heating efficiency in fusion devices boosted by metal screens

How everyday activities inside your home can generate energy

Pioneering advancements in solid-state battery technology for energy storage

ENERGY TECH
Air pollution in India tied to significant mortality rates

Japan inspects US air base over chemical spill

Somalia struggles to rid itself of plastic despite ban

Russian beach town declares emergency over oil spill

ENERGY TECH
Climate chemistry model finds "non-negligible" impacts of potential hydrogen fuel leakage

Aeromon achieves ISO 17025 accreditation for advanced emissions monitoring and flare efficiency analysis

Ukraine strikes Russian oil refinery, triggering fire

Hydrogen-powered truck breaks record, travels 1,800 miles on single fill

ENERGY TECH
NASA honours Algerian parks with Martian namesakes

Anthropologists urge preservation of human artifacts on Mars

New study questions the potential for liquid brines on Mars

NASA Outlines Latest Moon to Mars Plans in 2024 Architecture Update

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.