Energy News  
CIVIL NUCLEAR
Treated carbon pulls radioactive elements from water
by Staff Writers
Houston TX (SPX) Jan 20, 2017


C-seal F, a carbon source, magnified 200 times reveals its high surface area of 12.5 square meters per grams. Processing it into oxidatively modified carbon raises its surface area to 16.9 square meters per gram while enhancing its ability to remove radioactive cesium and strontium from water, according to researchers at Rice University and Kazan Federal University. Image courtesy Kazan Federal University.

Researchers at Rice University and Kazan Federal University in Russia have found a way to extract radioactivity from water and said their discovery could help purify the hundreds of millions of gallons of contaminated water stored after the Fukushima nuclear plant accident.

They reported that their oxidatively modified carbon (OMC) material is inexpensive and highly efficient at absorbing radioactive metal cations, including cesium and strontium, toxic elements released into the environment when the Fukushima plant melted down after an earthquake and tsunami in March 2011.

OMC can easily trap common radioactive elements found in water floods from oil extraction, such as uranium, thorium and radium, said Rice chemist James Tour, who led the project with Ayrat Dimiev, a former postdoctoral researcher in his lab and now a research professor at Kazan Federal University.

The material makes good use of the porous nature of two specific sources of carbon, Tour said. One is an inexpensive, coke-derived powder known as C-seal F, used by the oil industry as an additive to drilling fluids. The other is a naturally occurring, carbon-heavy mineral called shungite found mainly in Russia.

The results appear this month in Carbon.

Tour and researchers at Lomonosov Moscow State University had already demonstrated a method to remove radionuclides from water using graphene oxide as a sorbent, as reported in Solvent Extraction and Ion Exchange late last year, but the new research suggests OMC is easier and far less expensive to process.

Treating the carbon particles with oxidizing chemicals increased their surface areas and "decorated" them with the oxygen molecules needed to adsorb the toxic metals. The particles were between 10 and 80 microns wide.

While graphene oxide excelled at removing strontium, Tour said, the two types of OMC were better at extracting cesium, which he said has been the hardest element to remove from water stored at Fukushima. The OMC was also much easier and less expensive to synthesize and to use in a standard filtration system, he said.

"We know we can use graphene oxide to trap the light radioactive elements of relevance to the Fukushima cleanup, namely cesium and strontium," Tour said. "But in the second study, we learned we can move from graphene oxide, which remains more expensive and harder to make, to really cheap oxidized coke and related carbons to trap these elements."

While other materials used for remediation of radioactive waste need to be stored with the waste they capture, carbon presents a distinct advantage, he said. "Carbon that has captured the elements can be burned in a nuclear incinerator, leaving only a very small amount of radioactive ash that's much easier to store," Tour said.

"Just passing contaminated water through OMC filters will extract the radioactive elements and permit safe discharge to the ocean," he said. "This could be a major advance for the cleanup effort at Fukushima."

The two flavors of OMC particles - one from coke-derived carbon and the other from shungite - look like balls of crumpled paper, or roses with highly irregular petals. The researchers tested them by mixing the sorbents with contaminated water as well as through column filtration, a standard process in which fluid is pumped or pulled by gravity through a filter to remove contaminants.

In the mixing test, the labs dispersed nonradioactive isotopes of strontium and cesium in spring water, added OMC and stirred for two hours. After filtering out the sorbent, they measured the particles left in the water.

OMC1 (from coke) proved best at removing both cesium and strontium from contaminated water, getting significantly better as the sorbent was increased. A maximum 800 milligrams of OMC1 removed about 83 percent of cesium and 68 percent of strontium from 100 milliliters of water, they reported.

OMC2 (from shungite) in the same concentrations adsorbed 70 percent of cesium and 47 percent of strontium.

The researchers were surprised to see that plain shungite particles extracted almost as much cesium as its oxidized counterpart. "Interestingly, plain shungite was used by local people for water purification from ancient times," Dimiev said. "But we have increased its efficiency many times, as well as revealed the factors behind its effectiveness."

In column filtration tests, which involved flowing 1,400 milliliters of contaminated water through an OMC filter in 100-milliliter amounts, the filter removed nearly 93 percent of cesium and 92 percent of strontium in a single pass. The researchers were able to contain and isolate contaminants trapped in the filter material.

Research paper: "Oxidatively Modified Carbon as Efficient Material for Removing Radionuclides From Water"


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CIVIL NUCLEAR
AREVA to supply refueling equipment upgrades to TVA reactors
Washington DC (SPX) Jan 17, 2017
AREVA NP signed a multimillion-dollar agreement with the Tennessee Valley Authority (TVA) to provide fleet-wide refuel equipment upgrades. Under this contract, AREVA NP will upgrade existing refueling platforms, manipulator cranes, fuel transfer systems and used fuel bridge components. This modern equipment will help operators increase efficiency, strengthen performance and reduce time when rece ... read more


CIVIL NUCLEAR
Populus dataset holds promise for biofuels, materials, metabolites

Handheld Sensor Unit Determines Biofuel Content Of Diesel Blends

Dual-purpose biofuel crops could extend production, increase profits

Iowa State engineer helps journal highlight how pyrolysis can advance the bioeconomy

CIVIL NUCLEAR
Asia Pacific to gain edge in low-carbon growth

Xinhua: U.S. wasting opportunity in clean energy

Rooftop Solar in the Spotlight at the World Future Energy Summit Solar Expo

Capital One invests big in SolarReserve's Crescent Dunes solar energy project

CIVIL NUCLEAR
Renewables a big boost for GE's profits

Essen, Germany wins greenest city honors

Obama puts offshore North Carolina on wind energy map

DNV GL certifies new prototype of Siemens' 8 MW Offshore Wind Turbine

CIVIL NUCLEAR
Australian energy group backs Li Ka-shing takeover

China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

CIVIL NUCLEAR
New design strategy for longer lasting batteries

Samsung blames Galaxy Note 7 fires on faulty batteriesW/LLL

Harnessing the energy of fireworks for fuel

Physicist uncovers clues to mechanism behind magnetic reconnection

CIVIL NUCLEAR
Trump could enact sweeping changes to environment policy

China tells local meteorological bureaus to stop smog alerts

Researchers develop environmentally friendly soy air filter

Slovenian dogs sent 'crazy' by road salting mix-up

CIVIL NUCLEAR
Oil state of Texas still facing some economic pressures

Shell continues evolution by parting with Saudi corporation

Tight market signs give boost to oil prices

New drilling under way in Senegalese hot spot

CIVIL NUCLEAR
Opportunity Continues Its Journey South Along Crater Rim

New Year yields interesting bright soil for Opportunity rover

HI-SEAS Mission V crew preparing to enter Mars simulation habitat

Hues in a Crater Slope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.