Energy News  
CIVIL NUCLEAR
Seawater yields first grams of yellowcake
by Staff Writers
Sequim WA (SPX) Jun 14, 2018

This first gram of yellowcake was produced from uranium captured from seawater with modified yarn. Chien Wai and colleagues at LCW Supercritical Technologies produced the yellowcake, a powdered form of uranium used to produce fuel for nuclear power production.

For the first time, researchers at Pacific Northwest National Laboratory and LCW Supercritical Technologies have created five grams of yellowcake - a powdered form of uranium used to produce fuel for nuclear power production - using acrylic fibers to extract it from seawater.

"This is a significant milestone," said Gary Gill, a researcher at PNNL, a Department of Energy national laboratory, and the only one with a marine research facility, located in Sequim, Wash. "It indicates that this approach can eventually provide commercially attractive nuclear fuel derived from the oceans - the largest source of uranium on earth."

That's where LCW, a Moscow, Idaho clean energy company comes in. LCW with early support from PNNL through DOE's Office of Nuclear Energy, developed an acrylic fiber which attracts and holds on to dissolved uranium naturally present in ocean water.

"We have chemically modified regular, inexpensive yarn, to convert it into an adsorbent which is selective for uranium, efficient and reusable," said Chien Wai, president of LCW Supercritical Technologies. "PNNL's capabilities in evaluating and testing the material, have been invaluable in moving this technology forward."

Wai is a former University of Idaho professor who, along with colleague Horng-Bin Pan, was involved in earlier DOE-funded research to develop materials in order to increase domestic availability of uranium, which is mostly imported into the U.S. currently.

Wai founded LCW and, with funding from the Small Business Innovation Research program, worked out a new approach to adsorb the uranium onto a molecule or ligand that is chemically bound to the acrylic fiber. The result is a wavy looking polymer adsorbent that can be deployed in a marine environment, is durable and reusable.

The adsorbent material is inexpensive, according to Wai. In fact, he said, even waste yarn can be used to create the polymer fiber. The adsorbent properties of the material are reversible, and the captured uranium is easily released to be processed into yellowcake. An analysis of the technology suggests that it could be competitive with the cost of uranium produced through land-based mining.

PNNL researchers have conducted three separate tests of the adsorbent's performance to date by exposing it to large volumes of seawater from Sequim Bay next to its Marine Sciences Laboratory. The water was pumped into a tank about the size of a large hot tub.

"For each test, we put about two pounds of the fiber into the tank for about one month and pumped the seawater through quickly, to mimic conditions in the open ocean" said Gill. "LCW then extracted the uranium from the adsorbent and, from these first three tests, we got about five grams - about what a nickel weighs. It might not sound like much, but it can really add up."

Gill notes that seawater contains about three parts per billion of uranium. It's estimated that there is at least four billion tons of uranium in seawater, which is about 500 times the amount of uranium known to exist in land-based ores, which must be mined.

Mining of underground uranium has environmental challenges not encountered with extracting it from the oceans. And Wai says the fibers, which have affinity for more heavy metals than just uranium, can likely be used one day to clean up toxic waterways themselves. He says the fibers have potential to extract vanadium, an expensive metal used in large scale batteries, from the oceans instead of mining it from the ground.

For now, based on the successful scaled-up testing in Sequim and significant production of yellowcake, LCW is applying for further SBIR funding for a uranium extraction field demonstration, to be led by PNNL, in the Gulf of Mexico, where the water is much warmer. The material performs much better in warmer water and extraction rates in the Gulf are expected to be three to five times higher, therefore making it more economical to obtain uranium from seawater.

The adsorbent technology is in the process of being licensed to LCW.


Related Links
Pacific Northwest National Laboratory
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CIVIL NUCLEAR
Ukraine puts out forest fire around Chernobyl
Kiev (AFP) June 7, 2018
A forest fire that had raged for three days in the restricted zone around Chernobyl, scene of the world's worst nuclear accident in 1986, was put out Thursday and no increase in radiation in the air was detected, authorities said. "The fire in the exclusion zone was put out" in the evening, the Ukrainian emergency situations service said in a statement. "Radiation levels in Kiev, Chernobyl and the power plant have not exceeded normal levels," it added. Chernobyl polluted a big part of Europ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CIVIL NUCLEAR
Scientists sustainably 3D print large objects out of cellulose

How to suck carbon dioxide from the sky for fuels and more

Polymer researchers discover path to sustainable and biodegradable polyesters

'Deforestation-free' palm oil not as simple as it sounds

CIVIL NUCLEAR
Flexible solar cells: Will they someday power your devices?

Optimized mounting enables shorter solar power purchase deals for the mining sector

Freedom Solar steers Austin Subaru dealership into fast lane of sustainability

French energy company ENGIE claims renewable edge

CIVIL NUCLEAR
Cryptocurrency blowing in the wind as mine opens in Estonia

U.S. Atlantic states eye offshore wind leadership

European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

CIVIL NUCLEAR
Trump readies new plan to aid coal and nuclear power

Carbon dioxide emissions drop from U.S. power sector

Study highlights environmental cost of tearing down Vancouver's single-family homes

Bitcoin estimated to use half a percent of the world's electric energy by end of 2018

CIVIL NUCLEAR
Rutgers-led research could lead to more efficient electronics

Paving the way for safer, smaller batteries and fuel cells

Physicists use terahertz flashes to uncover state of matter hidden by superconductivity

New model sheds light on key physics of magnetic islands that halt fusion reactions

CIVIL NUCLEAR
Macron's environmental record under fire as critics tally 'retreats'

Mediterranean could become a 'sea of plastic': WWF

Plastic wasteland: Asia's ocean pollution crisis

Cleaning up the 'sacred lake': locals tackle Titicaca pollution

CIVIL NUCLEAR
Equinor sees break-evens slashed for Johan Castberg

Gazprom Neft reports record dividend yield

High gas prices influencing consumer habits

Economic data overshadows Trump-Kim meeting for oil

CIVIL NUCLEAR
More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

Science Team Continues to Improve Opportunity's Use of the Robotic Arm









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.