Energy News  
CIVIL NUCLEAR
Rutgers-led research could revolutionize nuclear waste reprocessing and save money
by Staff Writers
New Brunswick NJ (SPX) Nov 02, 2017


These are two types of cages in the crystal structure of the metal-organic framework, MIL-101-Cr. The yellow spheres represent the pore space for capturing radioactive iodides and have diameters of 29 and 34 angstroms, respectively. An angstrom is one 10 millionth of a millimeter.

Seeking a better way to capture radioactive iodides in spent nuclear reactor fuel, Rutgers-New Brunswick scientists have developed an extremely efficient "molecular trap" that can be recycled and reused.

The trap is like a tiny, porous super-sponge. The internal surface area of just one gram of this material could stretch out to cover five 94-by-50-foot basketball courts, or 23,500 square feet. And, once caught inside, radioactive iodides will remain trapped for eons.

"This type of material has tremendous potential because of its high porosity," said Jing Li, distinguished professor in the Department of Chemistry and Chemical Biology at Rutgers University-New Brunswick. "It has far more space than a sponge and it can trap lots of stuff."

Li is corresponding author of a study on molecular traps for nuclear fuel reprocessing that was published in Nature Communications. The first author is Baiyan Li, a former postdoctoral associate in Li's group, and other Rutgers co-authors include doctoral students Hao Wang and Benjamin J. Deibert.

Reprocessing means separating spent nuclear reactor fuel into materials that may be recycled for use in new nuclear fuel or discarded as waste, according to the U.S. Nuclear Regulatory Commission. The U.S. has no commercial reprocessing facilities at the moment, but commercial facilities are operating in other countries.

When spent fuel is reprocessed, radioactive molecular iodine and organic iodide gases that pose cancer and environmental risks must be captured and sequestered. The long-lived gases are hard to capture and can leak into the environment, the Rutgers study says.

Solid adsorbents like silver-infused silica, alumina and zeolites can capture iodides, but their low uptake capacity and poor recyclability make them inefficient and costly, according to Li, who works in the School of Arts and Sciences.

So Rutgers and other researchers developed a "molecular trap" that is made of a highly porous metal-organic framework. Its performance exceeds the standard set by nuclear industry rules, which require waste reprocessing plants to remove more than 99.9 percent of radioactive iodides from spent nuclear fuel rods.

It also far outperforms all current industrial materials in adsorbing, or binding to, radioactive organic iodides. For example, its ability to adsorb methyl iodide at 302 degrees Fahrenheit exceeds that of a benchmark industrial product by more than 340 percent.

Another benefit of the Rutgers molecular trap is that captured methyl iodide can be removed from metal-organic frameworks, enabling their recycling and reuse. This is not possible with current industrial products, from which adsorbent must be sequestered along with captured radioactive iodides.

The metal-organic framework is also cheaper than existing products because it doesn't use silver or other precious metals, and is very robust, able to handle harsh reprocessing conditions such as high temperatures, high acidity and high humidity, Li said.

"We're off to a very good start and we'd like to make improvements," Li said. "Eventually, we hope it can be commercialized."

Research paper

CIVIL NUCLEAR
Dessel: a new step forward with the dismantling of the site
Dessel, Belgium (SPX) Oct 20, 2017
On October 9, 2017, the Belgian Federal Agency for Nuclear Control (Agence Federale de Controle Nucleaire - AFCN) gave its approval for the demolition of buildings 1 and 2 of the plant of FBFC International, a subsidiary of AREVA NP, located in Dessel (Belgium) and which is part of the Fuel BU. "This authorization marks another important step forward on the project. Three of the five nucle ... read more

Related Links
Rutgers University
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CIVIL NUCLEAR
Research aims to help renewable jet fuel take flight

Expanding Brazilian sugarcane could dent global CO2 emissions

Stiff fibers spun from slime

Converting carbon dioxide to carbon monoxide using water, electricity

CIVIL NUCLEAR
Scientists elevate quantum dot solar cell world record

Fitch: U.S. decision on Paris doesn't matter for renewable growth

Oil-rich Alberta adding more solar components

New fractal-like concentrating solar power receivers are better at absorbing sunlight

CIVIL NUCLEAR
New York sets high bar for wind energy

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

CIVIL NUCLEAR
Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

CIVIL NUCLEAR
Cobalt and tungsten the key to cheaper, cleaner hydrogen

Microscopic defects make batteries better

New research findings could lead to safer and more powerful lithium-ion batteries

UNIST researchers introduce novel catalyst for rechargeable metal-air batteries

CIVIL NUCLEAR
Chile to ban plastic bags in coastal regions

Schools closed over fears of toxic wind from Italy steel plant

Levels of microplastics in the Baltic have remained constant for 30 years

India top court bans dirty fuel to fight Delhi's bad air

CIVIL NUCLEAR
French foreign minister to visit Iran soon

BP back in balance even if oil moves back toward $50 per barrel

FAR Ltd. said Senegal oil may be its priority next year

U.S. trying to force its way into European energy sector, Kremlin says

CIVIL NUCLEAR
Mars Rover Mission Progresses Toward Resumed Drilling

Solar eruptions could electrify Martian moons

MAVEN finds Mars has a twisted tail

Mine craft for Mars









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.