. Energy News .




.
CIVIL NUCLEAR
Responding to the Radiation Threat
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Mar 13, 2012

Mass contamination from major radiation exposure events, such as the meltdown at Japan's Fukushima Daiichi nuclear power plant, require prompt treatment in the form of a pill, such as the treatment being developed at Berkeley Lab. File image courtesy AFP.

The New York Times recently reported that in the darkest moments of the triple meltdown last year of the Fukushima Daiichi nuclear power plant, Japanese officials considered the evacuation of the nearly 36 million residents of the Tokyo metropolitan area.

The consideration of so drastic an action reflects the harsh fact that in the aftermath of a major radiation exposure event, such as a nuclear reactor accident or a "dirty bomb" terrorist attack, treatments for mass contamination are antiquated and very limited.

The only chemical agent now available for decontamination - a compound known as DTPA - is a Cold War relic that must be administered intravenously and only partially removes some of the deadly actinides - the radioactive chemical elements spanning from actinium to lawrencium on the periodic table - that pose the greatest health threats.

Scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) are developing a much more effective alternative that decontaminates a large number of the actinides likely to be part of the radiation exposure from a nuclear plant or weapon, including plutonium, americium, curium, uranium and neptunium.

Furthermore, the Berkeley Lab treatment can be administered orally in the form of a pill, a necessity for prompt treatment in the event of mass contamination.

Depending on the level of radiation exposure and how soon treatment can start, one of these pills would result in the excretion of approximately 90-percent of the actinide contaminants within 24 hours. Taking one pill daily for two weeks should be enough to remove virtually all of the actinide contaminants.

"With the expanding use of nuclear power and unfortunate possibility of nuclear weapon use, there is an urgent need to develop and implement an improved therapy for actinide contamination of a large population," says Rebecca Abergel, a chemist who leads the Bioactinide Group at Berkeley Lab's Glenn T. Seaborg Center.

"We are now in the process of demonstrating that our actinide-specific decontaminating agents are ready for clinical development."

Once actinides are ingested or inhaled, their radioactivity and cancerous interactions with cells and tissue demand they be immobilized and removed from the body as soon as possible.

Abergel and her group are part of an effort at Berkeley Lab that began more than two decades ago under the leadership of Ken Raymond, a chemist who holds joint appointments with Berkeley Lab and the University of California (UC) Berkeley, where he is the Chancellor's Professor of Chemistry, in collaboration with the late Patricia Durbin.

The primary goal of this project has been to identify sequestering agents that can encapsulate actinides into tightly bound cage-like chemical complexes for transport out of the body.

The early focus of this research was on plutonium, the alpha particle-emitting actinide discovered by Berkeley Lab Nobel laureate Glenn Seaborg, and natural chelators, the crablike molecules that specifically bind with iron and other metal ions.

"Since the biochemical properties of plutonium(IV) and iron(III) are similar, we modeled our sequestering agents after the chelating unit found in siderophores," Raymond says. Siderophores are small molecules secreted by bacteria to extract and solubilize iron. "This biomimetic approach enabled us to design multidentate hydroxypyridonate ligands that are unrivaled in terms of actinide-affinity, selectivity and efficiency."

The two best candidate hydroxypyridonate ligands - nicknamed HOPO - developed by Abergel and her colleagues are a tetradentate, which has four chelating arms, and an octadentate, which has eight chelating arms. The "arms" in this case are atoms with pairs of electrons available for covalent bonding with an actinide.

"We've advanced our two candidate ligands through the initial phases of pre-clinical development by successfully scaling up synthesis to the 5-kilograms level and establishing baseline preparation and analytical methods suitable for manufacturing larger amounts under good manufacturing practice guidelines," Abergel says.

The team has also carried out extensive studies in animal models and human cell lines that established the two HOPO candidates as being highly effective and non-toxic at the tested doses. As for comparisons between the two, each has its own merits.

"A single octadentate HOPO can form a full actinide complex and results in more total actinide excretion," Abergel says. "However, it is easier for the smaller tetradentate HOPO to pass through biological membranes and access desired target sites in the body. Both warrant further development for emergency use in the case of a radiological event."

Abergel says the basic research and development phase of these two candidates has been completed and she and her group have started the process with the U.S. Food and Drug Administration (FDA) to determine what further data is needed to move into clinical trials.

Typically at this stage of development a private pharmaceutical company would step in but it is difficult to attract private investors for a drug that will hopefully never be needed.

"As we move further along with the FDA process it should be easier to convince private pharmaceutical companies to get involved," Abergel says.

In addition to Abergel, Raymond and Durbin, other researchers who are or have been involved in this project include Dahlia An, Kathleen Bjornstad, Eleanor Blakely, Deborah Bunin, Polly Chang, Shirley Ebbe, Erin Jarvis, Birgitta Kullgren, Chris Rosen, David Shuh, Manuel Sturzbecher-Hoehne and Jide Xu. There have been several scientific papers published about this work with the most recent being "Multidentate terephthalamidate and hydroxypyridonate ligands: towards new orally active chelators," in the journal Hemoglobin. It was written by Abergel and Raymond. This research was primarily supported by the National Institutes of Health through the National Institute of Allergy and Infectious Diseases and the Rapid Access to Interventional Development Program. Support also came from the DOE Office of Science.

Related Links
Berkeley Lab
Bioactinide Group
Glenn T. Seaborg Center
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CIVIL NUCLEAR
Fukushima lesson: Prepare for unanticipated nuclear accidents
Ann Arbor MI (SPX) Mar 09, 2012
A year after the crisis at Japan's Fukushima Daiichi nuclear power plant, scientists and engineers remain largely in the dark when it comes to fundamental knowledge about how nuclear fuels behave under extreme conditions, according to a University of Michigan nuclear waste expert and his colleagues. In a review article in this week's edition of the journal Science, U-M's Rodney Ewing and t ... read more


CIVIL NUCLEAR
Advanced Biofuels Industry Leaders Urge US Congressional Leaders to Extend Critical Tax Provisions

The Future of Ethanol - Brazilian and US Perspectives

For Lower Gasoline Prices, We Need E100 Engines, Not the Keystone XL Pipeline

Scania Switches to Fossil-Free Fuel in Internal Transport Services

CIVIL NUCLEAR
China solar giant faces glare of US trade row

NIST measurements may help optimize organic solar cells

SunMaxx Solar Launches New Solar Grade Glycol XT

Community Solar Garden Planned For Poudre Valley REA

CIVIL NUCLEAR
Masdar of Abu Dhabi procures two ZephIR 300 wind lidars

Raytheon to Supply Wind Turbine Mitigation Technology to the Netherlands Ministry of Defence

Mongolia to tap wind power

Yorkshire officials OK Hull turbine plant

CIVIL NUCLEAR
Saving power, saving money

ORNL-led team advances science of carbon accounting

Brazil's MPX to appeal court's rejection of power plant

$137B needed for Europe grid upgrades

CIVIL NUCLEAR
Ex Obama aide rips Japan's Hatoyama

Oil price volatility in focus at world energy forum

Oil and Gas is One of the Fastest Growing Segments of the Energy Sector in China

Benefits of single atoms acting as catalysts in hydrogen-related reactions

CIVIL NUCLEAR
Stars with Dusty Disks Should Harbor Earth-like Worlds

Star Comb joins quest for Earth-like planets

Researchers say galaxy may swarm with 'nomad planets'

New model provides different take on planetary accretion

CIVIL NUCLEAR
Babcock and UGL win Australian ship deal

USS George H.W. Bush Completes Magnetic Treatment

Alcoa shipbuilding techniques save costs

Germany preps Israeli super-sub for tests

CIVIL NUCLEAR
Rep. Schiff Applauds Decision to Reject NASA Request to Divert Mars Funds

Winter Studies of 'Amboy' Rock Continue

NASA Mars Orbiter Catches Twister in Action

Working models for the gravitational field of Phobos


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement