Radioactive matter migrates faster through fractured carbonate rock by Staff Writers Sede Boqer, Israel (SPX) Dec 22, 2015
Researchers at Ben-Gurion University of the Negev (BGU) have found that radioactive matter migrates more quickly in carbonate bedrock formations once it has leaked from a tank from near surface waste sites and geological repositories. Corroded stored waste containers can lead to radionuclide (radioactive) leakage, which may reach groundwater. The study, published in the online journal Environmental Science and Technology (ACS Publications), determined the impact of intrinsic colloid formation on increased migration of leaked radioactive materials in the environment. Colloids are microscopic inorganic or organic solids that remain suspended in water. Intrinsic colloids are formed when radioactive waste mixes with other dissolved components in the groundwater, such as bicarbonate. "This study showed that intrinsic colloids formed by interactions between soluble Cerium (Ce) and carbonates significantly increase the mobility of Ce injected into a carbonate rock fracture," explains BGU Zuckerberg Institute for Water Research Director Prof. Noam Weisbrod, Ph.D. "The formation of intrinsic colloids, if not accounted for, could result in the under prediction of radionuclide migration through fractures in fine-grained carbonate bedrock, such as chalk." In the study, Ce mobility as an intrinsic colloid was studied in an artificial rainwater (ARW) solution containing salt concentrations representative of those found in Negev Desert rainwater through a natural discrete chalk fracture. In the United States at the Nevada test site, radioactive elements moved 1.3 kilometers from their source in just 30 years: significantly more than what was predicted from theoretical calculations. However, the extent to which intrinsic colloids contributed to this migration remains unclear. "Determining the specific impact of intrinsic colloid formation by radioactive elements can aid in the development of migration models predicting radionuclide transport on a field-scale," says Prof. Weisbrod. "Thus, intrinsic colloids are expected to play an important role in actinide (radioactive elements) transport from nuclear repositories." Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock research funding was provided by The Pazi Fund (Grant 248) of the Israel Atomic Energy Commission (DOI) 10.1021/acs.est.5b03383.
Related Links American Associates, Ben-Gurion University of the Negev Nuclear Power News - Nuclear Science, Nuclear Technology Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |