Subscribe free to our newsletters via your
. Nuclear Energy News .




CIVIL NUCLEAR
Bury nuclear waste down a very deep hole, say UK scientists
by Staff Writers
Sheffield, UK (SPX) Apr 17, 2015


File image.

Scientists at the University of Sheffield calculate that all of the UK's high level nuclear waste from spent fuel reprocessing could be disposed of in just six boreholes 5km deep, fitting within a site no larger than a football pitch.

The concept - called deep borehole disposal - has been developed primarily in the UK but is likely to see its first field trials in the USA next year. If the trials are successful, the USA hopes to dispose of its 'hottest' and most radioactive waste - left over from plutonium production and currently stored at Hanford in Washington State - in a deep borehole.

University of Sheffield researchers are presenting the latest findings relating to these trials and new concepts for sealing the waste into the boreholes at the American Nuclear Society (ANS) conference in Charleston this week (April 13-16).

Professor Fergus Gibb, of the University of Sheffield's Faculty of Engineering, explains: "Deep borehole disposal is particularly suitable for high level nuclear waste, such as spent fuel, where high levels of radioactivity and heat make other alternatives very difficult. Much of the drilling expertise and equipment to create the boreholes already exists in the oil and gas and geothermal industries. A demonstration borehole - such as is planned in the US - is what is now needed to move this technology forward."

At the ANS conference next week, Professor Gibb, with co-researcher Dr Karl Travis, will be presenting modelling work carried out by the University of Sheffield team on the Hanford waste, which confirms that around 40 per cent of the waste, in terms of radioactivity, currently stored at the US site could be disposed of in a single borehole.

Fundamental to the success of deep borehole disposal is the ability to seal the hole completely to prevent radionuclides getting back up to the surface. Professor Gibb has designed a method to do this which he will be presenting at the conference next week: to melt a layer of granite over the waste, which will re-solidify to have the same properties as natural rock.

Professor Gibb's colleague at the University of Sheffield, Dr Nick Collier, will propose a method of fixing and surrounding the waste within the borehole using specialist cements able to handle the temperatures and pressures at that depth.

Deep borehole disposal (DBD) has a number of advantages over the current solution envisaged for all UK nuclear waste, which is in a mined repository at 500m depth:

+ DBD is effectively 'pay-as-you-go' disposal. A mined repository can cost from hundreds of millions to tens of billions of dollars to construct before any waste can be disposed of; DBD costs a few tens of millions of dollars per borehole.

+ There are more geological sites suitable for DBD as the granite layer that is required can be found at appropriate depths under most of the continental crust.

+ A borehole could be drilled, filled and sealed in less than five years, compared to the current timescale for a UK mined repository, which is to open in 2040 and take its first waste by 2075 (although a site has not yet been agreed).

+ As DBD disposes of nuclear waste at greater depths and with greater safety and because there are more potential sites available, it should be easier to obtain public and political acceptance of the technology.

+ DBD has limited environmental impact and does not require a huge site: the holes are a maximum 0.6m in diameter and can be positioned just a few tens of metres apart. Once a borehole is complete, all physical infrastructure on the surface can be removed.

+ While seismic activity might damage the containers within the borehole, fracture the surrounding rock and disrupt some of the nearest barriers in the borehole, it would still not destroy the isolation of the waste or make it possible for radioactivity to reach the surface or any ground water.

The demonstration borehole in the USA will be drilled just under half a metre in diameter and trials will be conducted to ensure waste packages can be inserted into the borehole and recovered if required. Initial results are expected in 2016. If these results are positive, disposal of the Hanford waste capsules would then take place in another borehole, just 0.22m in diameter.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Sheffield
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CIVIL NUCLEAR
Chernobyl Nuclear Power Plant to Officially Shutdown
Moscow (Sputnik) Apr 14, 2015
The State Inspectorate for Nuclear Regulation of Ukraine issued a permit for the completion of the Chernobyl NPP decommissioning and dismantling activities of the first three units. The State Inspectorate for Nuclear Regulation of Ukraine issued a separate permit for the completion of the Chernobyl NPP decommissioning and dismantling activities of the first three units, which survived the ... read more


CIVIL NUCLEAR
Swimming algae offer Penn researchers insights into living fluid dynamics

Plant cell structure discovery could lead to improved renewable materials

Biofuel crops replace grasslands nationwide

Algae from wastewater solves 2 problems

CIVIL NUCLEAR
Schneider Electric connects more than 300 MW to the UK grid in March

SEI spins-off Professional Services group to meet industry needs

CEC Evaluation Confirms Excellent Performance Of Vikram Solar Modules

RenXSol installs roof top power plant at KSCA's M Chinnaswamy Stadium

CIVIL NUCLEAR
Cornell deploys dual ZephIR lidars for more accurate turbulence study

U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

CIVIL NUCLEAR
British greenhouse gas emissions drop

Shifts in electricity generation spur net job growth, but coal jobs decline

Japan to pledge 20% greenhouse gas cut: report

Residential research poor foundation for sustainable development

CIVIL NUCLEAR
KOA Speer ships new 3W molded current sense resistor

How recharging leaves behind microscopic debris inside batteries

Packing heat: New fluid makes untapped geothermal energy cleaner

A camera that powers itself!

CIVIL NUCLEAR
Small solar eruptions can have profound effects on unprotected planets

The Solar System and Beyond is Awash in Water

Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

CIVIL NUCLEAR
Lockheed Martin integrating data systems on patrol boats

Fifth new Coast Guard cutter readied for acceptance trials

New submarine maintenance deal for Boustead DCNS Naval Corp.

Borey-Class Nuclear Submarines to Serve Russian Fleet Until 2050

CIVIL NUCLEAR
Mars has belts of glaciers consisting of frozen water

Mars' dust-covered glacial belts may contain tons of water

Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.